Neorickettsiosis can occur as acute or subacute rickettsiosis in neonatal horses that is clinically monitored by nose-to-nose contact, feeding, and grooming. Allergic and chronic forms of the disease are also recognized. Infection in pregnant mares can give rise to abortion immediately following infections or months after the birth of offspring. The diagnosis of clinical signs.

Neorickettsiosis has been recorded in six states, primarily in Kentucky and New York, and on several horse farms in the eastern USA. The disease was first reported in the USA in 1942, with subsequent reports in 1964, 1965, and 1966. The disease has been confirmed in nine counties in Kentucky, with the majority in central Kentucky (Figure 1).

To minimize losses from EN, equine owners are encouraged to review the environment in which horses are housed and take measures to improve the biosecurity of the premises. The following suggestions are based on the experiences of horsemen in Kentucky and other states.

1. Communicate with your veterinarian and other horsemen in your area to ensure that your horses are not bringing diseases with them. If you suspect that your horses are not healthy, you should contact your veterinarian immediately.

2. Avoid the introduction of new horses to your property. New arrivals should be isolated on your farm for a minimum of 14 days before being allowed to mix with your herd. This is to allow for the development of immunity to the disease and to prevent the introduction of new cases.

3. Communicate with your veterinarian and other horsemen in your area to ensure that your horses are not bringing diseases with them. If you suspect that your horses are not healthy, you should contact your veterinarian immediately.

4. Neorekttsiosis from infectious diseases is best treated by avoiding exposure whenever possible. For farms, the best biosecurity is obtained by quarantining newly arriving horses away from the general herd for sufficient time to allow for the development of immunity. This is particularly important for farms that are in close proximity to other infected farms or have had previous outbreaks of the disease.

5. Biosecurity from infectious diseases is best enhanced by avoiding exposure whenever possible. For farms, the best biosecurity is obtained by quarantining newly arriving horses away from the general herd for sufficient time to allow for the development of immunity. This is particularly important for farms that are in close proximity to other infected farms or have had previous outbreaks of the disease.

6. Biosecurity from infectious diseases is best enhanced by avoiding exposure whenever possible. For farms, the best biosecurity is obtained by quarantining newly arriving horses away from the general herd for sufficient time to allow for the development of immunity. This is particularly important for farms that are in close proximity to other infected farms or have had previous outbreaks of the disease.

7. Biosecurity from infectious diseases is best enhanced by avoiding exposure whenever possible. For farms, the best biosecurity is obtained by quarantining newly arriving horses away from the general herd for sufficient time to allow for the development of immunity. This is particularly important for farms that are in close proximity to other infected farms or have had previous outbreaks of the disease.

8. Biosecurity from infectious diseases is best enhanced by avoiding exposure whenever possible. For farms, the best biosecurity is obtained by quarantining newly arriving horses away from the general herd for sufficient time to allow for the development of immunity. This is particularly important for farms that are in close proximity to other infected farms or have had previous outbreaks of the disease.
Equine influenza (EI) is considered the second most important respiratory disease of horses, after rhinopneumonitis, and it affects 18-22% of horses annually in North America (6). EI is a contagious disease caused by an RNA virus in the orthomyxovirus family. The virus is transmitted through respiratory secretions, and can spread by direct contact or through contaminated objects. The virus can survive on dry surfaces and in the environment for several hours, indicating that sanitation is critical to prevent its spread.

Clinical Signs

Equine influenza can present in several forms, including mild to severe respiratory disease, or as a systemic illness.

- **Mild form**
 - Fever
 - Runny nose
 - Loss of appetite

- **Severe form**
 - High fever
 - Rapid breathing
 - Cyanosis
 - Collapse

Diagnosis

Diagnosis of EI is often based on the clinical signs and confirmed by laboratory testing, such as nasal swab or serum sample analysis.

Prevention

Prevention of EI includes vaccination, a good biosecurity plan, and regular monitoring of horse populations.

Treatment

Treatment of EI is primarily supportive, including rest, fluid therapy, and anti-inflammatory medications.

Prevention Measures

- **Vaccination**
 - Annual vaccination is recommended for all horses.
 - Horses should be vaccinated against EI virus type A2 and B1.

- **Biosecurity Measures**
 - Segregate sick horses from healthy ones.
 - Limit horse movement.

- **Sanitation**
 - Regular cleaning and disinfection of equipment and facilities.

Conclusion

Equine influenza is a significant respiratory disease affecting horses worldwide. Early recognition and prompt treatment are crucial to minimize the impact of the disease on affected horses and their populations. Regular vaccination and adherence to biosecurity guidelines are critical in managing and preventing the spread of EI.
EQUINE INFECTIOUS ANAEMIA

The disease is transmitted by equine influenza virus (EIV), a highly contagious respiratory virus, and can cause severe illness and death in horses. Vaccination is the primary means of controlling EIA, and horses that are vaccinated regularly have a high degree of protection.

CLINICAL SIGNS

Infection with EIA typically causes a febrile illness, often with coughing and nasal discharge. The disease can range from mild to severe, with some horses developing severe respiratory distress and pneumonia. Mortality rates can be high, particularly in young or debilitated horses.

DIAGNOSIS

Diagnosis of EIA is confirmed by a combination of clinical signs, laboratory testing, and vaccination history. A positive test result indicates recent or past EIA infection, while a negative result suggests the horse has not been exposed to the virus.

TREATMENT

Treatment of EIA is primarily supportive care, including the use of antiviral drugs and antibiotics to treat secondary infections. Severe cases may require intensive care and respiratory support.

PREVENTION

Prevention of EIA relies on vaccination. Horses should be vaccinated at least once a year to maintain protective immunity. The use of an EIA vaccine before the onset of clinical signs also helps to reduce the severity of the disease.

EQUINE INFLUENZA

Influenza is a highly contagious respiratory disease that affects horses. The virus is transmitted by aerosolized respiratory droplets and can cause upper respiratory tract infections, as well as more severe, systemic illness.

CLINICAL SIGNS

Clinical signs of equine influenza include fever, coughing, nasal discharge, and vocalization. Some horses may also develop pneumonia, diarrhea, or skin lesions. The severity of the illness can vary, with some horses recovering fully and others requiring intensive care.

DIAGNOSIS

Diagnosis of equine influenza is usually made through clinical presentation and laboratory testing. A negative test result does not exclude the disease, as some horses may have a false-negative result.

TREATMENT

Treatment of equine influenza is supportive care, including the use of anti-inflammatory drugs, antibiotics, and fluid therapy. Vaccination is the best prevention against equine influenza.
Vaccinate your horses using a vaccine that is an Equal Opportunity source and author is re-acknowledgment of the Quarterly is not subject to Material published in the equine-disease-quarterly of the true incidence of the disease. There is compelling evidence that sarcoids are the viral replication, which is likely due to differences in immune function and to the best results. However, not every lesion—or may explain the apparent breed-specific variation of the disease. Specific gene variation, in sarcoids at around 90%; compared to other treatment options represented by the least risk to the horse and lead to the best results. However, not every lesion—or may explain the apparent breed-specific variation of the disease. Specific gene variation, in sarcoids at around 90%; compared to other treatment options represented by the least risk to the horse and lead to the best results.

Horse with sarcoid lesion

Figure 1. Equine Influenza

Equine influenza (EI) is considered the most serious respiratory disease facing horses in the Americas, particularly in light of the minimal interval between outbreaks. It is caused by equine influenza virus (EIV), a member of the Orthomyxoviridae family. EI virus activity has recently increased in the United States and other countries, with EI outbreaks reported during January and February in 2013. The EI virus has been isolated from horses in the eastern United States, but virus activity surged in the last three months of 2013. The EI virus is known to be highly contagious and can spread rapidly through a horse population. The virus is transmitted via respiratory droplets, contact with infected secretions, or by direct contact with an infected horse. EI can cause mild to severe respiratory symptoms, including coughing, sneezing, and nasal discharge. In severe cases, EI can lead to pneumonia, secondary bacterial infections, and even death.

Equine herpesvirus 1 related diseases were confirmed in the USA, with only three cases reported during the first three months of 2013. The EI virus is known to be highly contagious and can spread rapidly through a horse population. The virus is transmitted via respiratory droplets, contact with infected secretions, or by direct contact with an infected horse. EI can cause mild to severe respiratory symptoms, including coughing, sneezing, and nasal discharge. In severe cases, EI can lead to pneumonia, secondary bacterial infections, and even death.

Equine herpesvirus 1 related diseases were confirmed in the USA, with only three cases reported during the first three months of 2013. The EI virus is known to be highly contagious and can spread rapidly through a horse population. The virus is transmitted via respiratory droplets, contact with infected secretions, or by direct contact with an infected horse. EI can cause mild to severe respiratory symptoms, including coughing, sneezing, and nasal discharge. In severe cases, EI can lead to pneumonia, secondary bacterial infections, and even death.
EQUINE NEORICKETTSIOSIS: INCIDENCE IN KENTUCKY IN 2018

Equine neorickettsiosis (EN) is a chronic, multisystemic, tickborne disease in horses characterized by fever, cough, lack of appetite, lameness, depression, and weakness. The majority of cases are seen in mares. Although the majority of cases were in mares, the preponderance of cases (20) was seen in 1-2 year old yearlings. The preponderance of cases were (20) was seen in 1-2 year old yearlings. The majority of cases were in mares.

The disease was first reported in the USA in 1979 as a sporadic condition observed in horses pastured in proximity to the Potomac River. Curiously, the disease remained localized in Jefferson County, Kentucky for a significant number of years. In 1999, the disease was reported in 12 states, six died and the remainder survived.

Four states reported 10 or more cases of EN: California, Kentucky, Virginia, and Texas. The number of cases increased from 2015 to 2017. The disease was reported in 50 states in the USA in 2018. All states in the USA, with the exception of Kentucky, reported 1-3 cases. The highest number of cases was reported in California (87), Kentucky (43), Virginia (28), and Texas (27). The disease is zoonotic and can cause a severe illness in humans. The onset of symptoms is typically 2-3 days after exposure to infected ticks, and symptoms include fever, chills, headache, myalgia, and rash. The disease is typically self-limiting and resolves with supportive care. However, in severe cases, the disease can be fatal. The mortality rate is highest in young horses and pregnant mares. The disease is transmitted by the lone star tick, Amblyomma americanum, which is found in the eastern and southeastern parts of the USA.

Neorickettsia risticii can cause a severe, multisystemic, tickborne infection in horses and is transmitted by the lone star tick, Amblyomma americanum. The disease is characterized by fever, cough, lack of appetite, lameness, depression, and weakness. The majority of cases are seen in mares. Although the majority of cases were in mares, the preponderance of cases (20) was seen in 1-2 year old yearlings. The majority of cases were in mares.

The disease was first reported in the USA in 1979 as a sporadic condition observed in horses pastured in proximity to the Potomac River. Curiously, the disease remained localized in Jefferson County, Kentucky for a significant number of years. In 1999, the disease was reported in 12 states, six died and the remainder survived.

The disease was first reported in the USA in 1979 as a sporadic condition observed in horses pastured in proximity to the Potomac River. Curiously, the disease remained localized in Jefferson County, Kentucky for a significant number of years. In 1999, the disease was reported in 12 states, six died and the remainder survived.

To minimize losses from EN, horses must be encouraged to write the environment in which they are kept and to recognize the clinical signs of infection. Early intervention on the part of the equine veterinarian on strategies that might be used to prevent EN must be encouraged. To minimize the opportunities for horses to become infected, insecticides should be used and remove beetles and larvae when they are present. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.

Neorickettsia risticii can cause acute enterococcicosis in neonatal foals which is characterized by high fevers, collapse, anorexia, and diarrhea. All ages and breeds of horses are at risk of developing the disease. Infection in pregnant mares can give rise to abortion immediately following calving or months after the conclusion of the pregnancy. Teboroxime-resistant N. risticii.
Neorickettsia risticii can cause acute, severe, and potentially lethal disease in horses. The disease is caused by Neorickettsia risticii, a Gram-negative, intracellular bacterium. Neorickettsia risticii can be transmitted to horses by the bite of infected Mayfly or Caddisfly larvae, which live in freshwater habitats. The bacteria are ingested by horses when they eat infected aquatic insects. The disease is not contagious per se; infection is naturally acquired by horses accidentally ingesting aquatic insects harboring metacercariae (fluke-stage embryos) infected with Neorickettsia risticii.

EQUINE NEORICKETTSIOsis Incidence in Kentucky in 2018

Equine neorickettsiosis (EN) is a very contagious and potentially lethal disease of horses in Kentucky. The disease was first reported in the USA in 1979 as a sporadic condition observed in horses pastured in proximity to the Potomac River. Since then, the disease has been confirmed in horses pastured in the southeastern United States and has been reported in 23 states. The disease has been confirmed in Canada, Uruguay and Brazil in South America, and in Europe.

The majority of outbreaks in Kentucky were reported in Bullitt, Shelby, Livingstone, and Oldham Counties. The majority of outbreaks occurred in central Kentucky (Figure 1). According to the Kentucky Department of Agriculture, a total of 26 EN cases were confirmed in Kentucky in 2018.

To minimize losses from EN, horsemen were encouraged to review the environment in which horses are housed and managed. Biosecurity is essential to protecting the health of horses during outbreaks. Horses should be isolated for a minimum of 14 days. As respiratory shedding can occur for an extended period of time, the recommended minimum isolation period of 14 days should be extended to limit horse-to-horse contact and require strict biosecurity measures.

The disease is not contagious per se; infection is naturally acquired by horses accidentally ingesting aquatic insects harboring metacercariae (fluke-stage embryos) infected with Neorickettsia risticii. The bacteria are ingested by horses when they eat infected aquatic insects. The disease is not contagious per se; infection is naturally acquired by horses accidentally ingesting aquatic insects harboring metacercariae (fluke-stage embryos) infected with Neorickettsia risticii.

In 2018, the disease was confirmed in Kentucky for a significant number of cases. In total, the majority of the confirmed cases were reported in counties where horses were pastured in proximity to water. The disease is not contagious per se; infection is naturally acquired by horses accidentally ingesting aquatic insects harboring metacercariae (fluke-stage embryos) infected with Neorickettsia risticii.

In 2018, the disease was confirmed in Kentucky for a significant number of cases. In total, the majority of the confirmed cases were reported in counties where horses were pastured in proximity to water. The disease is not contagious per se; infection is naturally acquired by horses accidentally ingesting aquatic insects harboring metacercariae (fluke-stage embryos) infected with Neorickettsia risticii.
multiple cases of equine coronavirus type 2 and 5 in five different countries (subclinical infection), especially if they have been vaccinated. Horses can be infected and still appear normal. ...Strategies for preventing disease include: familiarize yourself with the clinical signs of EI. Some horses are believed to be the most common signs of equine influenza (EI). There are two main virus subtypes, named A and B, which are responsible for causing disease in horses. The sign that arises during EI is a fever, which may be accompanied by anorexia or loss of appetite. Sometimes horses may show unusually rapid breathing (tachypnoea) or lose its appetite (anorexia). Sometimes horses can also have a harsh cough. Other signs include fever and nasal discharge, which are the most common signs of EI. The main reason for these signs is that the virus is able to cause damage to the immune system in horses, leading to secondary ulceration of the eye’s surface. As a result, the virus is able to cause damage to the immune system in horses, leading to secondary ulceration of the eye’s surface. To minimize the chances of developing sarcoids, it is important to maintain healthy and stress-free conditions for horses. One way to do this is to keep horses at a healthy weight, which can help prevent the development of sarcoids. Equine influenza is a highly contagious disease that can be transmitted between horses through the air. Once the virus is inhaled, it can cause inflammation in the upper respiratory tract, leading to fever and respiratory symptoms. In some cases, the virus can also cause neurological symptoms, such as loss of coordination and loss of vision. To protect their horses from EI, horse owners should follow the guidelines of the American Association of Equine Practitioners (AAEP) and the World Organization for Animal Health (OIE).